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Libération, 33405 Talence, France

SUMMARY

This paper is devoted to the simulation of two-dimensional compressible fluid flows. We present a new
second-order cell-centered scheme that solves the gas dynamics equations written in the Lagrangian
formalism. The scheme is developed on general unstructured meshes consisting of arbitrary polygons.
The robustness and accuracy of this new scheme are demonstrated through several test cases. Copyright
q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Our aim is to propose a new Lagrangian cell-centered scheme for the two-dimensional gas dynamics
equations. The classical Lagrangian approach uses a staggered finite difference scheme in which
velocities are vertex-centered and density, pressure and internal energy are cell-centered, see [1].

An alternative to the staggered discretization is to use a conservative cell-centered discretization
in which all primary variables, including velocities, are cell-centered. The main advantage of
using cell-centered velocities is the consistency among control volumes for the advection of mass,
momentum and energy, in the perspective of an arbitrary Lagrangian–Eulerian extension of the
Lagrangian scheme. Classical staggered discretizations do not have this consistency. However,
consistent extensions have been developed for these discretizations, [2, 3].

The main difficulty with the cell-centered approach lies in the fact that the vertex velocity
needed to move the mesh cannot be directly computed. In [4], the node velocity is calculated
via a special least-squares procedure. It turns out that it leads to an artificial grid motion, which
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requires a very expensive treatment [5]. Moreover, with this approach the fluxes calculation is not
consistent with the node motion. Recently, a new cell-centered formulation has been proposed
[6]. It is a conservative and entropy-consistent two-dimensional scheme based on a nodal solver
in which the vertex velocity is computed in a coherent manner with the face fluxes. However, it
appears that in the case of one-dimensional flows, this scheme leads to a nodal velocity which
depends on the cell aspect ratio.

This drawback has motivated us to develop a new cell-centered scheme that solves this aspect
ratio problem [7]. Our scheme computes consistently the nodal velocity and the numerical fluxes
through cell interfaces. Its main feature is the introduction of four pressures on each edge, two
for each node on each side of the edge. This is the main difference from [6]. Momentum and
total energy conservation are ensured and the scheme satisfies a local entropy inequality. The
paper is organized as follows. First, we recall the gas dynamics equations written in an integral
Lagrangian form. After that, we give the spatial approximation and the nodal solver. Then, we
describe briefly the second-order extension. Last, we show the accuracy and robustness of our
scheme with numerical results.

2. GAS DYNAMICS EQUATIONS IN LAGRANGIAN FORM

The Lagrangian formalism consists in computing the rates of change of volume, mass, momentum
and energy, assuming that the computational volumes are following the material motion. Let �(t)
denote a control volume moving with the fluid velocity V= (u, v)t, its mass constant and the
Lagrangian conservation equations for volume, momentum and total energy in control volume
form are

d

dt

∫
�(t)

d� −
∫

��(t)
V · N dl = 0

d

dt

∫
�(t)

�V d� +
∫

��(t)
PN dl = 0

d

dt

∫
�(t)

�E d� +
∫

��(t)
PV · N dl = 0

where ��(t) is the boundary of �(t), N is the unit outward normal to ��(t) and dl is the length
element on ��(t). In these equations, � is the mass density, E = � + 1

2V · V is the specific total
energy and � is the specific internal energy. The pressure P is given as function of density � and
internal energy � by the equation of state. These equations are well known and have been used in
this form in many papers, see, for example, [4].

3. SPATIAL APPROXIMATION

3.1. Notations and assumptions

Throughout this paper, we will use the same notations as those introduced in [2]. Let {c} be a
collection of non-overlapping polygons whose reunion covers the domain filled by the fluid. Each
cell is labelled with a unique index c. We denote by {n} the set of all the vertices of the cells. Each
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Figure 1. Notations in a cell (left) and around a node (right).

vertex is labelled with a unique index n. If we consider a given cell c, we introduce the set of all
the vertices of the cell c and denote it byN(c). For a given node n, we also define the set of all the
cells that share this vertex and denote it by C(n). The sets N(c) and C(n) are counterclockwise
ordered. For a node n ∈N(c), n− and n+ are the previous/next nodes with respect to n in the
list of vertices of cell c, see Figure 1 (left). We denote by Lc

n and Lc
n the half length of the edges

[n−, n] and [n, n+]. We use the same notations to define the unit outward normals Nc
n and Nc

n , see
Figure 1 (left).

All fluid variables are assumed to be constant in cell c and we denote them by using subscript c.
Therefore, we obtain a spatial approximation which is first-order accurate.

3.2. Vertex fluxes

A set of evolution equations is written for the discrete unknowns (�c,Vc, Ec) using the Lagrangian
conservation equations in control volume form applied to cell c, see [7]

mc
d

dt
�c − ∑

n∈N(c)

(
Lc
nN

c
n + Lc

nN
c
n

)
· V�

n = 0 (1)

mc
d

dt
Vc + ∑

n∈N(c)

(
Lc
n P

�,c
n Nc

n + Lc
n P

�,c
n Nc

n

)
= 0 (2)

mc
d

dt
Ec + ∑

n∈N(c)

(
Lc
n P

�,c
n Nc

n + Lc
n P

�,c
n Nc

n

)
· V�

n = 0 (3)

In these equations, �c is the specific volume and mc is the mass in the cell c that is constant during
time. V�

n denotes the nodal velocity. The main feature of our discretization is the introduction of
the two pressure fluxes P�,c

n and P�,c
n at the node n, see Figure 1. P�,c

n (resp. P�,c
n ) represents the

pressure acting between the midpoint of edge [n−, n] (resp. [n, n+]) and the node n, seen from
cell c. The Cartesian coordinates of node n are Xn = (Xn, Yn)t. The motion of the nodes is given
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by the trajectories equation (d/dt)Xn =V�
n, Xn(0)= xn . We note that (1) is consistent with the

nodes motion.

3.3. Solver at vertices

This subsection describes the way in which the vertex velocity and the pressure fluxes are
determined in our scheme. Let us consider a particular node n and a cell c∈C(n). c− and
c+ are the previous/next cells with respect to c in the list of cells c, see Figure 1. The fluid in cell c
is characterized by (Zc, Pc,Vc), where Zc denotes the acoustic impedance defined as the product
of sound velocity and density of the fluid. Let V�

c−,c denote the normal velocity at the edge [c−, c]
shared by cells c− and c. This normal velocity is obtained with the approximate acoustic Riemann
solver

V�
c−,c =

(
ZcVc + Zc−Vc−

Zc + Zc−

)
· Nc−,c − Pc − Pc−

Zc + Zc−
(4)

where Nc−,c =Nc−
n = − Nc

n is the unit normal at the edge [c−, c]. The nodal velocity is com-
puted from the following least-squares procedure. V�

n = (u�
n, v

�
n)

t is the vector that minimizes the
functional

I (u�
n, v

�
n) = ∑

c−,c
�c−,c(V

�
n · Nc−,c − V�

c−,c)
2 (5)

In this equation, the sum is made over all the edges impinging on node n and �c−,c denotes
the weight corresponding to the edge [c−, c]. This weight will be evaluated in the sequel. The
least-squares problem is posed by the equation ∇ I = 0 where ∇ I = (�I/�u�

n, �I/�v�
n)

t. This yields
the vectorial equation ∑

c−,c
�c−,c(V

�
n · Nc−,c − V�

c−,c)Nc−,c = 0 (6)

For given non-negative weights, this equation admits always a well-defined solution. Then, knowing
the nodal velocity, we define the pressure fluxes in the following way:

Pc− − P�,c−
n = Zc−(V�

n − Vc−) · Nc−,c (7)

Pc − P�,c
n = − Zc(V�

n − Vc) · Nc−,c (8)

If we subtract (8) from (7), after straightforward calculations, one gets P�,c
n − P�,c−

n = (Zc +
Zc−)(V�

n · Nc−,c − V�
c−,c). Since, in general, we have V�

n · Nc−,c �=V�
c−,c then P�,c

n �= P�,c−
n and

we lose momentum conservation contrary to classical finite volume approaches. Nonetheless, we
can show that momentum conservation can be recovered provided the weight �c−,c is given by

�c−,c = Lc−,c(Zc + Zc−) (9)

We recall that the weights used for the least-squares problem in [4] are the inverse of the side
lengths and consequently are very different from those we have obtained here. With this choice
and the definition of the pressure fluxes, (6) becomes∑

c∈C(n)

(Lc
n P

�,c
n Nc

n + Lc
n P

�,c
n Nc

n) = 0 (10)
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Finally, we obtain momentum and also total energy conservation. Knowing the weights �c−,c,
the nodal velocity is obtained by solving (6). One can verify that with these fluxes the entropy
production rate in the cell c is always positive. Thus, our scheme satisfies a local entropy inequality,
see [7] for the detailed proof.

Our scheme computes in a coherent way the vertex motion as well as the face fluxes. It is
shown in [7] that the nodal solver recovers the one-dimensional acoustic solver in the case of
one-dimensional planar and cylindrical flows, contrary to the scheme derived in [6]. The boundary
conditions are easily derived using the same methodology, see [7].

4. SECOND-ORDER EXTENSION

The spatial second-order extension is obtained by a piecewise linear monotonic reconstruction of
the pressure and velocity, given by their mean values over mesh cells. This reconstruction utilizes a
least-squares procedure, see [8]. We define slope limiters in such a way that the values of the linear
function at the cell vertices are within the bounds defined by the maximum and the minimum of
the mean values over the set consisting of cell c and its nearest neighbors, see [8]. Finally, instead
of using the mean values of the pressure and the velocity in our nodal solver, we use their nodal
extrapolated values deduced from the linear reconstruction. The time discretization is explicit and
is based on a classical two-step Runge–Kutta procedure.

5. NUMERICAL RESULTS

5.1. Noh problem on a Cartesian grid

A perfect gas with � = 5
3 is given an initial unit inward radial velocity. The initial thermodynamic

state is given by (�, P) = (1, 0). The initial domain is a square of unit length. We use a Cartesian
grid defined by a mesh of 50× 50 cells. In Figure 2 (left), we can observe the high quality of the
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Figure 2. Noh problem, density map (left) and density in all cells (right) at t = 0.6.
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Figure 3. Sedov problem (polygonal grid), density map (left) and density in all cells (right) at t = 1.

mesh after shock reflection. For the density, we obtain a very good agreement with the analytical
solution, see Figure 2 (right).

5.2. Sedov problem on a polygonal grid

This test case describes the evolution of a blast wave in a point symmetric explosion. We present
numerical results obtained with the data and the polygonal grid defined in [2]. In Figure 3, we
observe a good agreement with the analytical solution for the density. The numerical solution
preserves very well the cylindrical symmetry. This result shows the ability of our scheme to handle
unstructured meshes.

6. CONCLUSIONS

This new second-order cell-centered Lagrangian method looks promising not only as a stand-
alone entity but also as a foundation for arbitrary Lagrangian–Eulerian method. The uniform cell
centering of the solution variables provides a consistent basis for employing a wide range of
well-proven remapping and adaptation schemes. Our future works will be on the multimaterial
ALE extension and the three-dimensional extension of our Lagrangian scheme.
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